
NASA/CR- 1998-206920

ICASE Report No. 98-11

A Novel Approach for Adaptive Signal Processing

Ya-Chin Chen

Imperial College, London, UK and ICASE

Jer-Nan Juang

NASA Langley Research Center

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contract NAS 1-97046

February 1998



Available from the following:

NASA Center for AeroSpace Information (CASI)

800 Elkridge Landing Road

Linthicum Heights, MD 21090-2934

(301) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171

(703) 487-4650



A NOVEL APPROACH FOR ADAPTIVE SIGNAL PROCESSING

YA-CHIN CHEN* AND JER-NAN JUANG t

Abstract. Adaptive linear predictors have been used extensively in practice in a wide variety of forms. In

the main, their theoretical development is based upon the assumption of stationarity of the signals involved,

particularly with respect to the second order statistics. On this basis, the well-known normal equations can

be formulated. If high-order statistical stationarity is assumed, then the equivalent normal equations involve

high-order signal moments. In either case, the cross moments (second or higher) are needed. This renders the

adaptive prediction procedure non-blind. A novel procedure for blind adaptive prediction has been proposed

and considerable implementation has been made in our contributions in the past year. The approach is based

upon a suitable interpretation of blind equalization methods that satisfy the constant modulus property and

offers significant deviations from the standard prediction methods. These blind adaptive algorithms are

derived by formulating Lagrange equivalents from mechanisms of constrained optimization. In this report,

other new update algorithms are derived from the fundamental concepts of advanced system identification

to carry out the proposed blind adaptive prediction. The results of the work can be extended to a number

of control-related problems, such as disturbance identification. The basic principles are outlined in this

report and differences from other existing methods arc discussed. The applications implemented are speech

processing, such as coding and synthesis. Simulations are included to verify the novel modelling method.

Key words, blind equalization, blind adaptive prediction, equality and inequality constraints
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1. Introduction. The progress in linear prediction (LP) techniques in recent years has collectively

helped to advance many areas of research. Information supply services are now available in a wider range of

application fields [1, 2, 3]. The LP technique was first used for speech analysis and synthesis by Itakura and

Saito [4], and Atal and Schroeder [5], and has produced a large impact of speech research such as coding,

recognition, enhancement and so on [6, 7, 8, 9].

The methodology of solutions in LP is essentially based on the minimization of squared error between

real and estimated values. The conventional prediction can be carried out based on standard procedures

only upon the assumption of a stationary discrete-time stochastic process as the model equations are based

on second-order statistics assumed to be constant. In that case, the use of second order statistical properties

of signals is needed. In practical applications, the observation interval can be quite short [10], (e.g. a speech

sound or phoneme, assumed to be wide-sense stationary (WSS) for about 20 to 80 ms [11]). In order to

compromise the assumption, these processes are considered to be "locally" WSS. However, the use of a

short data record is not without its problems since any spectral estimate based upon a limited data set will

exhibit a large variability due to inaccurate estimates of the second order statistical properties. Under these

assumptions, the model so developed cannot respond to even moderately slowly varying signal attributes of
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these statistical nature. So, a novel model which enables us to conquer these problems is essentially vital in

practice.

To build up a predictor, ideally, we should make no a priori assumptions at all, and hence it is intended

to be used for any sort of signal whether it is stationary or non-stationary, and of short data record or

long data record. The crucial concept is to parameterize the model sample by sample, so that no training

sequence is needed in the prediction procedm'e nor is the stationary statistical assumption necessary. In our

early study [27], a procedure for blind adaptive prediction was proposed to overcome the difficulties inherent

in the non-stationarity of the signals to be modelled. This approach is based upon a suitable interpretation

of blind equalization methods that satisfy the constant modulus property and offers significant deviations

from the standard prediction methods. We formulated the problem of signal prediction in the context of

a linear model, in terms of keeping the error of representation at each estimate to within a predefined set

of bounds rather than minimizing a functional on the assembly of a set of errors. By such means we can

control the error per sample while retaining many of the original and desirable signal attributes.

The general way to solve equalization in blind equalizer is based upon stochastic gradient descent (SGD)

algorithms. All of the existing algorithms, such as the Sato [12], Godard [13], and some SGD algorithms,

are aimed at minimizing a cost function to converge to the equilibrium. Based on this as a starting point,

the algorithms for implementing our blind adaptive prediction are derived from mechanisms of constrained

optimization [27]. Other than the SGD algorithms, we derive three novel algorithms from the fundamental

algebraic concepts of advanced system identification to carry out this proposed blind adaptive prediction.

Also, the mechanisms of equality and inequality constraints are discussed. The results of the work can be

extended to a number of control-related problems, such as disturbance identification.

1.1. Background. Blind equalizers are important devices in high data rate, bandlimited digital com-

munication systems [14, 15]. Godard (1980) was the first one to propose a family of constant modulus blind

equalization algorithms for use in two-dimensional digital communication system (e.g. M-ary phase shift

keying). The most widely used blind equalization algorithm, the constant modulus algorithm (CMA), was

so named by Treichler and Agee (1983) [16], independently of Godard's 1980 paper [13]. The CMA utilizes a

novel quality assessment mechanism to solve adaptive filtering problems without the need for a "desired sig-

nal". Thus, the transmitted signals can be recovered when the channel is unknown [13, 16, 17]. This means

that the transfer function, i.e., the convolution of the unknown channel and its equalizer, is the Kronecker

delta with some delay and a constant gain. So, the equalizer, in fact, is the inverse of the unknown channel.

A general diagram of blind equalization is shown in Fig 1.1. The simple way to achieve the implementa-

tion, as found in literature, is to define a cost function and approach the optimization by means of gradient

descent method. Although CMA has been proposed, simulated, developed, and successfully applied, formal

description of its behavioural properties is far from complete. The considerable problem is whether the

CMA based on stochastic gradient descent (SGD) minimization of a specific mean cost function will always

converge to its global rather than local minima [18, 19, 20]. It is very crucial because the undesirable local

minima [12, 21] can cause insufficient removal of inter-symbol interference (ISI), which can produce errors

in the reconstructed data stream at the receiver output.

Much work [21, 22] has been reported to indicate that these CMA families might ill-converge, i.e.,

converge to local minima, if they are not properly initialized, due to the local minima of the corresponding

cost function. To improve the situation, the normalized constant modulus algorithm (NCMA) has been

proposed [23, 24]. This type of algorithm has a stable operation for values of the step size in a larger range,

in contrast to unnormalized algorithms, for which the step size range is often hard to determine. A larger
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step size makes the convergence faster and often helps to avoid the undesirable local minima. However,

despite the beneficial effects of the flexible step size range, the initialization problem remains. If the initial

weights of the equalizer are chosen far away from the optimal point, equalization may not be achievable.

In order to overcome this problem, an alternative CMA algorithm is proposed by Tanrikulu et al. in [25].

It is observed that the algorithm very often converges globally independent of the initialization. In the

normalized family of algorithms, normalization affects the denominator of the gradient part of the update

equations. This is in terms of a 2-norm of the input vector, and hence when the signal level is small or zero

(e.g., during the silent period in speech), it can force the algorithm to diverge. An alternative algorithm

through the Lagrange Neural Network is proposed to avoid such divergence. Complete work for the blind

algorithm family has been collectively reexamined [26].

1.2. Outline of the report. The report consists of four main sections. The current section has

introduced the goals of this report, namely the motivation fowards the development of a new predictive

modelling based on blind equalization principles and its relevance to digital signal processing and control-

related problems. Section 2 summarizes the new approach to adaptive prediction [26, 27, 28] along with

the significant deviations between this new method and the conventional one. The problem is explored

from the definition of blind equalization, from which adaptive prediction is derived and so are the updating

algorithms. It appears speech coding can be done in a straightfoward manner by this method. In section 3,

linear algebra used in advanced system identification is applied to tackle the same problem. Three algorithms

are derived from equality and inequality constraints. The details of derivation are given and simulations on

speech coding illustrate their performance. The final section, section 4, concludes with an assessment of the

work from constrained optimization and analytical algebra. Some future directions currently being examined

are also involved.

2. Blind adaptive prediction. The basic idea of blind equalization for binary input data, CMA,

imposes the constraint of constant modulus at the output to recover the transmitted signal while the desired

signal is unknown and so is the channel [13, 29]. In this section, this principle is applied to formulate the

problem of signal prediction in the context of a linear model. In this novel prediction approach the error of

representation at each estimate is kept to within a predefined set of bounds. This is in direct contrast to the

procedures so far that minimize a functional on the assembly of a set of errors. This new approach offers

significant advantages in comparison to the conventional methods. The error is kept under control at each

sample, and hence no training sequence is needed in advance and no statistical assumptions and long term

attributes of signals need be made.

The predictor coefficients are updated between each consecutive sample until an objective constraint is

optimized. After that, the coefficients represent an interesting result, in which they resemble piecewise con-

stants. The variation of the coefficients in a single decomposition is different for different update algorithms.



Moreover,it dominatestheprediction performance.

The significant result from this modelling is the extraction of piecewise constant parameters, i.e., the

tap weights of the equalizer. With piecewise constant parameters, the reconstruction of the signal is easily

achievable. In this section, the experiment is carried out on a speech signal. The performance of the model

indicates that this novel prediction method is reliable and robust to the practical problems.

2.1. Principle. For the general blind equalization problem, the problem has been expressed as a con-

strained optimization in the form [24]

min{ltW(k + 1) - W(k)[I 2}

(2.1) st. IXT(k)W( k + 1) I= 1

where the vector W(k) contains the coefficients of the equalizer W(k) = [00(k) 01 (k) 02(k)... On (k)] T, and

X(k) is an observed sequence, X(k) = Ix(k) x(k - 1) x(k - 2) .... x(k - n)] r.

The constraint for our current purpose can be changed to

(2.2) [ XT(k)W(k + 1) l=

where e is the error signal, which is an arbitrary constant [27].

Equation(2.2) can be rewritten by the form

(2.3) [ x(k)Oo(k + 1) + X(k - 1)TO(k + 1) [= e

where O(k) : [01(k) 02(k) .... On(k)] T and X(k - 1) : [x(k - 1) x(k - 2) .... x(k -n)] T. The output of the

equalizer is then

(2.4) y(k) = X(k)TW(k) = Oo(k)x(k) + X(k - 1)TO(k)

The first coefficient of the equalizer, 00, is fixed to be unity, and the e is chosen to be much smaller than the

average of the observed sequence for example. When equalization is achieved, equation(2.4) becomes

(2.5) -{-e = x(k) + X(k - 1)T_l(k)

and under the assumption that e is kept small, the estimated output value at the time instant k is obtained

from the linear combination of the past samples as

(2.6) _(k) = -X(k- 1)T{9(k)

Assuming constant predictor weights between instants k and k + 1, the adaptive prediction is then formulated

as

(2.7) _(k + 1) = --X(k)Teopt

{}opt is the coefficients of the adaptive predictor.



2.2. Blind Algorithms. Imposing the principal approach in the previous section to blind filtering

algorithm, the prediction is carried out sample by sample. Because the variation in the constancy of the

coefficients differs from the adapting algorithms and furthermore, the constancy is a measure of the accuracy

achieved in prediction, different blind algorithms are derived and compared by simulating speech signal in

this section. The two algorithms being discussed are as follows:

(1) Normalized Constant Modulus Algorithm (NCMA);

(2) Soft Constraint Satisfaction Algorithm (SCS).

2.2.1. Modified Normalized Constant Modulus Algorithm (MNCMA). In [23], 1992, Hilal and

Duhamel have derived a normalized constant modulus algorithm (NCMA) by nulling the a posteriori error

of constant modulus algorithm (CMA) at each iteration. These normalized algorithms can be also developed

in an alternative fashion as suggested and derived by Papadias and Slock [15, 24, 30, 31]. We apply this

principle to derive the modified normalized constant modulus algorithm to implement our prediction. The

problem now can be reformulated as

(2.s)

min{H_)(k + 1) - O(k)H22}

st. [ x(k) + X(k - 1)TO(k + 1) [= e

The solution yields the update algorithm to be

(2.9) O(k+l) =O(k)+
1)11_(e2 × sgn(y(k)) - y(k))X(k - 1)IIX(k

wherer # is the step size for the weights, [[.[[denotes 2-norm, and k is time index. This normalized algorithm

has a stable adaptation for a step size in a larger range, and hence it helps avoiding the undesirable local

minima and, i.e., ill-convergence [24].

In this simulation, we use the speech signal shown in figure 2.1. The signal is normalized with a

maximum amplitude of 1. The constant e is set to be 0.1, the length of the equalizer is chosen as 11, and

the step size, #, is 0.001. The unit-center tap anchoring strategy [32] used in general blind equalization is

not suitable for this prediction case. Indeed, the first coefficient of the predictor is actually fixed to 1, as

indicated in equation(2.5), and hence the taps are initialized to 0(0) = [-1 0 .... 0] T. Figure 2.2 shows

the error signal obtained by this procedure, which is bounded as expected. Prediction is carried out in a

sample by sample fashion according to equation(2.7) and the result is shown in figure 2.3. The corresponding

coefficients are found in figure 2.4. It is seen from this figure that the coefficients exhibit an approximate

piecewise constant behavior. This may be a useful means of carrying out speech coding. With the piecewise

constant parameters, the reconstruction of speech signal is easily achievable.
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2.2.2. Soft Constraint Satisfaction Algorithm (SCSA). In [28], the optimization problem in

section 2.2.1 is modified by imposing a quadratic constraint

(2.1o) rain {PIo( + 1) - o(k)ll]}

st. (x(k) q- X(k - 1)T_(k q- 1)) 2 = e2

and hence the Lagrange equivalent can be formed as

(2.11) L = IIO(k + 1) - O(k)l122 + ,k((x(k) + X(k - 1)TO(k + 1)) 2 - e2)

By the same derivation in [25], the SCS algorithm takes the update form [33]

1

(2.12) O(k + 1) = f}(k) + IIX(k - 1)lr_(_[y(k)]. - y(k))X(k - 1)

= y(k)
1-#(1- _)

For our simulation work we used the speech signal in figure 2.1. The constant _ is also set to be

0.1. The length of the equalizer is set to 11, and the step size is 0.001. We initialize the adaptation

with 0(0) = [-1 0 .... 0] T. Figure 2.5 shows the error signal bounded as the constant modulus constraint

satisfied, and the predicted result is in figure 2.6. However, the prediction coefficients in figure 2.7 show

a larger deviation than the corresponding result from MNCMA. Nevertheless, the speed of convergence is

faster in that in about 100 iterations we reach constraint optimization.

2.3. Summary. From these simulations, the coefficients of the equalizer are approximately piecewise

constant. It is evident that different algorithms produce different behavior with respect to the expected

constancy of the coefficients. From equations(2.6) and (2.7), the expected constancy in the coefficients is a

measure of the effectiveness achieved in prediction. The predicted results in figure 2.3 and figure 2.6 illustrate

this clearly. If computational cost is to be considered, then the SCS algorithm performs better. However,

the SCS exhibits the larger variation in the coefficients.

Another interesting result is the relation between the satisfaction of constraints and the constancy of

the predictor coefficients. It appears that the predictor coefficients can respond fast enough to satisfy the

constraint absolutely, which can be referred to as the equality constraint. However, meanwhile, the filter

tracks noise to cause the large deviation of the coefficients. Therefore, the coefficients in figure 2.4 behave

more constant corresponding to a bounded constraint, the inequality constraint, in figure 2.2.

3. Novel algorithms. A brief review of blind adaptive prediction has been given and the results

produced by constrained optimization have been discussed in section 2. In this section, we will tackle the

same problem by employing the fundamental algebra used in advanced system identification instead of the

proposed solution in [27, 28]. Moreover, according to the summary in section 2.3, the requirements, the

satisfaction of constraints and the piecewise constancy of the coefficients, relate to equality and inequality

constraints, so we put both of them into effect and derive different algorithms. These novel algorithms

need no iterations between each estimate and therefore, they are feasible in real-time computation. The

fundamental linear algebra is outlined and the derivation of algorithms are also detailed. Experiments are

simulated with applications to speech signal.
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3.1. Equality constraint. In this section, an equality constraint is imposed to carry out the blind

adaptive prediction. By means of equality constraint, the error signal is fully satisfied to the predefined

value. Therefore, the ignored error in prediction, equation(2.7), is well controlled. However, from the results

shown in the previous section, the fully satisfied constraint causes the variance of the coefficients to be

larger. To conquer this trade-off problem, a preprocess for coefficient smoothing is employed to enhance the

constancy of the coefficients.

3.1.1. Non-iterative Method. The first novel algorithm is conducted by the fundamental algebra

and the method of least squares. In this derivation, we simply solve the problem to obtain the analytical

solution, so there is no need to approach a desired objective iteratively, which the blind algorithms in previous

section do.

Problem definition and algorithm derivation. The problem of blind adaptive prediction is defined

by minimizing the disturbance of parameters of the predictor subject to a constant modulus constraint. The

formulation of the output of the equalizer is now rewritten

(3.1) y(k) = x(k) + Xr(k - 1)O(k)

Instead of utilizing constrained optimization methods, from equation(2.8), we may solve equation(3.1) using

linear algebra [12] to obtain a general solution for the coefficients of the predictor

(3.2) O(k + 1) = [XT(k-- 1)]t(e-- x(k)) + X0(k- 1)C

10



where X0(k - 1) contains n column basis vectors of the null space of the column vector X(k - 1), and

[XT(k -- 1)] ? is the pseudoinverse of the row vector XT(k -- 1), which can be computed by

(3.3) [XT(k -- 1)1t = [XT(k -- 1)X(k - 1)]-xX(k - 1)

if XT(k - 1) is not a null row vector. The null-space basis vectors in X0(k - 1) may be generated by using

the singular value decomposition [12]. Note that the matrix X0(k - 1) computed by

(3.4) X0(k - 1) = I - [XT(k -- 1)]tXT(k -- 1)

is in the same space as X0(k - 1) but has a different size of dimension. The matrix X0(k - 1) may be used

in equation(3.2) to replace X0(k - 1). However, special caution must be taken into account that X0(k - 1)

is ill-conditioned with rank short at least by one.

After the constraint, equation(3.1), is fully satisfied by the solution in equation(3.2), the cost function in

equation(2.8) is taken into consideration. The minimization of the disturbance of the coefficients has been

defined as

(3.5) AO = IIO(k + 1) - O(k)l[2 2

Substituting the solution from equation(3.2) into equation(3.5) yields the disturbance equation

(3.6) AO = IlX0(k - 1)C + {[XT(k -- 1)l*(e - x(k)) - O(k)}ll_

Thus, the disturbance can be minimized by solving for the least-squares solution [12, 34] of the arbitrary

vector C from equation(3.6) as

(at) c = -xt0(k - 1){[XT(k -- 1)]*(e - x(k)) - O(k)} = Xt0(k - 1)O(k)

The second equahty holds because X(k - 1) is orthogonal to X0(k - 1), i.e.,

XT(k -- 1)X0(k - 1) = 0 ===>Xt0(k - 1)[XT(k -- 1)It = 0

The coefficients obtained from equation(3.2) satisfy the constraint equation(3.1) exactly. No iteration is

necessary between each estimate. As the arbitrary vector C is the least-squares solution, the cost function

in equation(3.5) is globally minimized.

Simulation. The speech signal shown in figure 3.1 is part of the whole sequence in figure 2.1 from

time index k = 16851,...., 23500. The length of the equalizer is taken to be 11, and the error signal is

set to 0. According to equation(2.5), the first coefficient of the equalizer, 00, is fixed to be unity to carry

out the prediction, equation(2.7). From figure 3.2, it shows the constraint is fully satisfied as the error

signal is predefined by 0. Because the adaptation tracks each estimate to fulfill the constraint such that

the coefficients of the predictor vary in a large deviation, which can be found in figure 3.3. Hence, if the

median of these coefficients is taken to reconstruct the original speech signal, the result, figure 3.4, turns

out in a slightly different scale from the original one. From these results, once again, it illustrates that the

11



FIG. 3.1. Original speech signal

satisfaction of the constraint and the demand of piecewise constant coefficients are mutually influenced. If

the requirement of satisfaction of the constraint comes first, the adaptation tracks all the signals including

noises at the same time. On the contrary, if the piecewise constant coefficients arc required by the prediction

in equation(2.7), the adjustment of the constraint should be reconsidered. From the practical point of view

in coding, compression, and synthesis, the piecewise constancy of the predictor coefficients are more crucial

than the satisfaction of the constraint.

3.1.2. 2-step Method (Enhancement). The enhanced algorithm is aimed at smoothing the coeffi-

cients to improve piecewise constancy of the coefficients. A preprocess is added using a conventional recursive

least-squares technique to compute a set of smoothing coefficients. The same update procedure from the

non-iterative method is then used to fine tune the coefficients to satisfy the constraint equation.

Problem definition and algorithm derivation. In coefficient smoothing, the method is exploited

directly from what has been widely used in system identification [34]. Indeed, a set of smoothing coefficients

can be determined by the minimization defined as

k

(3.8) rain If Y_ Ak-itxT( i -- 1)Os(k) - x(i)] 2 II
i=1

where Os is the smoothing coefficients and A is a parameter such that 0 < A _< 1. The parameter )t is called

the forgetting factor that is a time-varying weighting of the data. The most recent data is given unit weight,

but data that is n time steps old is weighted by )_n. The method is commonly called exponential forgetting.

The parameter Os(k) which minimizes the equation(3.8) is given recursively by

Xr(k -- 1)P(k - 1)
a(k) =

+ XT(k - 1)P(k - 1)X(k - 1)

&(k) = XT(k -- 1)O_(k - 1)

12
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P(k - 1) [I - XT(k)G(k)]
P(k) = )_

Os(k) -- O,(k - 1) + Ix(k) - _(k)] G(k)

where G(k) is the update gain determined by the matrix P(k - 1), the vector X(k - 1), and the scalar A. The

initial values of P(O) and Os (0) can be arbitrarily assigned. Conventionally, P(O) and Os (0) are assigned as

din and On× x, respectively where d is a large positive number, In is an identity matrix of dimension n × n,

and On × 1 is a zero matrix of dimension n × 1.

Rather than minimizing the disturbance of two consecutive coefficients, the disturbance is taken with

respect to the smoothing coefficients.

(3.9) AO = tlO(k + 1) - Os(k)ll2 _

The minimization steps are the same as that presented in section 3.1.1. The predictor coefficients can then

be obtained after the complete 2-step adaptation.

Simulation. In order to compare the enhanced algorithm to the previous non-iterative one, the same

experiment in section 3.1.1 is used again. Let the forgetting factor set to )_ = 0.999 and the intial value of

P(0) = 1000Ill. The constraints are examined with respect to the smoothing coefficients and the predictor

coefficients, as shown in figure 3.5 and figure 3.6, respectively. The constraint from the smoothing coefficients

does not satisfy the predefiaaed value while the predictor coefficients does. However, from figure 3.7 and

figure 3.8, it can be seen that the predictor coefficients vibrate more rapidly than the smoothing coefficients.

This is because predictor coefficients have to track noise to fulfill the constraint at each estimate. By taking

the medians of these two sets of coefficients, the speech signals are reconstructed in figure 3.9 and figure 3.10,

respectively.

14
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Another simulation is done by increasing the length of the equalizer to be 16. The interesting results

shown in figure 3.11 and figure 3.12 indicate that the coefficients can approximate to constants overall without

the scale jump due to the segment of words. This may reduce the memory for signal storage.

3.1.3. Summary. From the above results, it is clear that the algorithms derived in this section can

achieve blind adaptive prediction without iterations. This makes real-time computation feasible. The en-

hanced algorithm makes a progress in the piecewise constancy of the predictor coefficients. This improvement

enhances the reconstructed signal more reliable. From the point of view of signal compression, the low rate

storage can be achieved when the filter length is taken long enough, which can be referred to the case,

L= 16.

3.2. Inequality constraint. Different from the equality constrained methods, this method is based

on an inequality constraint, which makes the error being bounded within the predefined value rather than

exactly equivalent to it. When the disturbance below the predefined bound, which is mostly due to noise,

is measured, the coefficients stop tracking the signal, and retain the same as the previous ones. It will be

seen that the coefficients behave the expected constancy as the 2-step algorithm does. However, it requires

no preprocess for coefficient smoothing.

3.2.1. Problem definition and algorithm derivation. The problem is now in the form of the

following equation after imposing an inequality constraint

(3.1o)

min{llO(k + 1) - O(k)l122}

st. Ix(k) + Xr(k - 1)O(k + 1) I<
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The computation can be briefly summarized

Ifl x(k) + XT(k- 1)O(k + 1) I_< e

O(k + 1) = O(k).

eZse

O(k + 1) = O(k) + AO(k)

When the constraint is not bounded within the expected value, the error signal can be presented as

Ix(k) + XT(k-- 1)O(k + 1) I> e(3.11)

Assume that

(3.12) x(k) + XT(k - 1)O(k + 1) = er

where er is the real value of the error signal. The difference between the error signal and the desired constraint

bound can be computed by

(3.13) ]er I -e = Ac

and thus

(3.x4) I x(k) + XT(k -- 1)O(k + 1) I -A_ =

The update algorithm for the coefficients can then be obtained

(3.15) O(k + 1) = [XT(k -- 1)]t[sgn(x(k)) x e - x(k)] + X0(k - 1)C
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where X0(k- 1) is the null space of the vector X(k - 1). The coefficient vector C is obtained using the same

way as presented in equation(3.7) for equality constraint.

3.2.2. Simulation. The same speech signal shown in figure 3.1 is simulated again. The length of the

equalizer is set to be 11, and the bound of the constraint is predefined as 0.1. In figure 3.15, the result

indicates the error is bounded within 0.1 rather than exactly equivalent to 0.1. The coefficients shown in

figure 3.16 behave piecewise constant clearly except the transient part. In this case, the median values of the

coefficients can represent precisely the overall coefficients. The reconstructed signal by the median values of

the coefficients, figure 3.17, keeps the features of the original signal quite well.

3.2.3. Summary. In the inequality constrained method, the constraint condition and the constancy

of the desired coefficients can be treated synchronously. As long as the error signal is bounded within the

constraint, the update of the coefficients is not necessary. In this case, we can simply leave the coefficients

unchanged to satisfy the demand for piecewise constant coefficients. As a result, the preprocess of coefficient

smoothing is no longer required in the inequality constrained method, but the constancy of the coefficients

is better than that from the equality constrained algorithm. This is because the coefficients only track the

signal beyond the predefined bounds. The disturbance below some bounds usually results from the existence

of irrelevant noise. With a reasonable bound for the inequality constraint, the variation of the coefficients

can be considerably reduced. This can be applied to noise reduction, or signal enhancement.

4. Conclusions and Future work. Conventional linear predictive coding has limitations because

their theoretical development is based on the assumption of stationarity and thus the corresonding adaptive

prediction is non-blind. In practice, prediction on a sample-by-sample basis is desirable. The sample-by-

sample concept is especially useful for short data records, since the conventional linear predictive coding

2o
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exhibits a large variability due to a lack of averaging for a short data record.

In section 2, the blind adaptive prediction is reviewed and some results are also given to illustrate its

performance. The implementation is completed using constrained optimization mechanisms. The prediction

processes are driven by error signal and the corresponding predictor coefficients. The extraction of ultimately

piecewise constant parameters is a novel means of modelling signals.

In comparison to the algorithms based on constrained optimization mechanisms, the novel algorithms

proposed in section 3 can not only achieve the same performance but also speed the computation because

of no need of iteration. This makes real-time computation feasible. These algorithms are derived from

fundamental linear algebra, and some concepts of advanced system identification. The results of the work

can be extended to a number of control-related problems, such as disturbance identification.

Other work of interest being examined includes stability study for closed-loop prediction. Also, the

mechanism of blind adaptive multi-stage prediction [28] is developing.
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